Тепловые насосы
Основная масса тех кто ищет дешевое отопление, хотят приблизится по стоимости ежемесячных платежей к магистральному газу. Немаловажно и минимальное обслуживание системы отопления. Конкурентов геотермальному тепловому насосу в этом отношении нет. Воздушные ТН, газгольдеры, салярка и т. п. дороже в разы.
Динамика рынка тепловых насосов за последние три десятилетия (как и солнечных коллекторов, и устройств, работающих на биомассе) показывает некоторую неравномерность развития, которая обусловлена многими факторами, главный из которых — повышение стоимости традиционных видов топлива. До сих пор широкому распространению тепловых насосов препятствует слабая информированность потенциальных инвесторов о инвестиционной привлекательности данного типа отопительных систем и восприятие теплового насоса, как «электрического отопления» с высокими издержками на отопление. Однако в настоящее время правильно спроектированные и установленные тепловые насосы имеют оптимальные решения по теплоснабжению, снижают издержки на отопление и вносят свой вклад в охрану окружающей среды.
Первичными источниками для производства тепловой энергии в тепловых насосах могут выступать геотермальные источники, грунт (зонт или коллектор) и воздух (в виде моноблока или сплита).
В основе принципа работы тепловых насосов лежит процесс аккумулирования низкотемпературного тепла при испарении и дальнейшей отдачи энергии при последующей конденсации, обратный тому, который происходит в холодильных установках.
В зависимости от характера отопления и необходимости различных температур для отопления, существует выбор типа теплового насоса или его комбинации с другим теплогенератором. По режиму работы выделяют моновалентное, бивалентное и моноэнергетическое использование тепловых насосов:
Тепловые насосы имеют следующие преимущества по сравнению с традиционными видами отопления:
Существует несколько видов тепловых насосов в зависимости от первоисточника: рассольно-водяной, водо-водяной, воздушно-водяной.
Для подбора теплового насоса необходимо знать тепловую нагрузку потребителя. При определении тепловой нагрузки следует обращать внимание на такие важные факторы, как: суточный расход воды, максимальный (пиковый) расход, возможные потери и тепловая производительность выбранного теплового насоса для режимов отопления и горячего водоснабжения. Из величины максимальной нагрузки горячего водоснабжения определяют пиковую производительность теплогенератора и максимальный объем накопительной емкости.
Наша компания предлагает тепловые насосы
Принцип работы теплового насоса
Принцип действия теплового насоса
Принцип работы теплового насоса
Основной принцип теплового насоса заключается в аккумулировании низкотемпературного тепла при испарении и дальнейшей отдачи энергии при последующей конденсации. Этот процесс происходит без изменения температуры, если только рабочее тело не будет сжато механически, что приведет к повышению температуры.
Теплонасос функционирует как холодильник, только наоборот: холодильник переносит тепло изнутри во вне, в то время как тепловой насос переносит тепло из окружающей среды вовнутрь. Природное тепло теплоносителя (в роли которого выступает вода или рассол) передается к испарителю. Внутренний контур теплового насоса заполнен хладагентом (рабочее вещество: фреон, аммиак, метан, пропан и др.), который, проходя через испаритель, превращается из жидкого состояния в газообразное. Из испарителя газообразный хладагент попадает в компрессор, где он сжимается до высокого давления и высокой температуры. Далее горячий газ поступает в конденсатор, где происходит теплообмен между горячим газом и теплоносителем из обратного трубопровода системы отопления дома. Хладагент отдает свое тепло в систему отопления, охлаждается и снова переходит в жидкое состояние, а нагретый конденсатор передает тепло в систему отопления.
Первичный контур теплового насоса состоит из элементов, участвующих в получении тепла из внешнего источника – например теплообменника, циркуляционного насоса рассола или воздушного вентилятора, а
у водо-водяного теплового насоса еще и промежуточного теплообменника.
Вторичный контур включает в себя компоненты, необходимые для преобразования энергии и передачи ее
потребителю.